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ABSTRACT 

 Proteins are molecular machines with the capacity 

to perform diverse physical work as response to 

signals from the environment. Proteins may be 

found as monomers or polymers, two states that 

represent an important subset of protein interactions 

and generate considerable functional diversity, 

leading to regulatory mechanisms closely akin to 

decision-making in service systems. Polymerization 

is not unique to proteins. Other cell compartments 

(e.g. secretory granules) or tissue states (e.g. 

miniature end plate potential) are associated with 

polymerization of some sort, leading to information 

transport. This data-processing mechanism has 

similarities with (and led us to the investigation of) 

granule homotypic polymerization kinetics. Using 

information theory, we demonstrate the role played 

by the heterogeneity induced by polymerization: 

granule size distribution and the stealthy machine 

behind granule life cycle increase system entropy, 

which modulates the source/receiver potential that 

affects communication between the cell and its 

environment. The granule inventory management 

by the same nano-machine is discussed. 

 
Keywords: unit granule, homotypic fusion, 

SNARE, cellular communication; 
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1. Introduction 

Most biological systems engage in data processing. 

Data are transmitted by means of material 

movement, performed by loss of organization (e.g. 

secretory granules are degranulated, receptors 

aggregate) and stored by polymerization: the DNA 

stores information in linear sequence of four 

alternating basic letters; enzymes store processing 

information in a sequence of amino acids; receptors 

polymerize to transfer data into the cell. The well 

documented formal definition of biological 

language has as common basis a “string” from a list 

of restricted symbols, the alphabet code for DNA, 

RNA, proteins, etc. Another level of biological 

information is stored in polymers, in which the 

alphabet consists of a single letter, the monomer. 
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Energy is stored as phosphate units [phosphate = 

the energy unit, AMP (monomer), ADP (dimer), 

ATP (trimer)]
1
. In neuronal transmission, miniature 

endplate potentials have been proved to be 

composed of polymers, multiples of monomers of a 

basic size
2,3,4

. Secretory granules have been 

demonstrated to be of quantal size (the unit granule 

aggregation model - Hammel, Lagunoff and Galli 

2010)
5
 and single receptors are known to aggregate 

following binding to activator
6,7

. All of these 

different languages have a restricted “grammar” 

currently under investigation worldwide. In a 

number of biological systems investigated, single-

letter polymers have size distributions that have 

been found to fit Geometric-like and Poisson-like 

distributions
5
, depending respectively on whether 

polymers of any size can expand by integration with 

any other polymer or growth is due to the addition 

of one single monomer at a time to any other 

polymer
5
. 

Our working paradigm is that immature unit 

granules (broken line G1 in Figure 1), packaged in 

the Golgi and released at Poisson process moments, 

have for some restricted time the ability to fuse with 

granules. Beyond this transient period these 

immature unit granules become (at some rate η) 

mature unit granules (solid line G1 in Figure 1), but 

some immature unit granules fuse early enough 

with mature unit granules (homotypic fusion), that 

grow as a result by unit quantal incremental size, 

from some size Gn (i.e., granule of quantal size n) to 

the next size Gn+1. Each mature granule is 

eventually secreted from the cell, by (heterotypic) 

fusion with the cell membrane. We have 

developed
8,9

 a growth and elimination (G&E) 

Markovian model under which mature granules 

grow at size-dependent rate λn and exit the cell at 

size-dependent rate µn. These rates are modelled by 

statistical mechanics reasoning so as to represent 

the probability of formation of the SNARE protein 

rosette that facilitates fusion. Letting the rosette be 

a ring composed of K SNARE complexes, K-1 such 

complexes must form during some interval of time 

at some disk around some initial SNARE. The 

probability of this simultaneous event is of order  

[(area-disk)/(surface-area-granule)]
K-1

         .

 

=[const*(area-disk)/(volume-granule)
2/3

]
K-1 

                  

=[const*(area-disk)/n
2/3

]
K-1

=const*n
-(2/3)(K-1)

. 

We have accordingly modelled
9
 the growth rate as 

λn = λn
β

 and the elimination rate as µn = µn
γ
, where 

β=-(2/3)(Kβ -1) and γ=-(2/3)(Kγ -1) are expressed in 

terms of the SNARE rosette sizes Kβ and Kγ 

necessary for homotypic and heterotypic fusion 

respectively (assumed constant and explained 

Figure 1. Scheme illustrating the dynamics of granule life in secretory cells (A) in which single steps in the G&E 

Markov model (B), based (via four global parameters β, γ, λ, µ) on two transition rates λn= λn
β
 and µn =µn

γ
 that 

describe the probability rate of a Gn-granule (granule of quantal size n) to move one level up and become a Gn+1-

granule (i.e. Gn+G1�Gn+1) or to move out of the system, respectively. The transition, which occurs after an 

exponentially distributed time with mean 1/(λn+µn), is an increase in size with probability λn/(λn+µn) and exit with the 

complementary probability µn/( λn+µn). “Birth” (Figure 1B) follows a Poisson process of formation of unit granules, 

each of which undergoes, independently, a Markov history as in Figure 1A. Newly formed immature secretory unit 

granules (broken line G1) can either mature (solid line G1) or homotypically fuse with another granule. 
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throughout the paper). These rates determine two 

natural quantal volume size distributions, the 

stationary distribution STAT of quantal volume of 

granules in the cell and the distribution EXIT of the 

quantal volume size of granules upon leaving the 

cell. These two distributions are readily evaluated 

from the effective kinetics factor µ/λ, the effective 

surface factor γ-β and the surface tension γ. 
 

The above applies to cells in basal mode. A cell 

in occasional evoked mode will secrete granules 

according to STAT, playing the role of the typical 

spatial distribution near the membrane. Thus, we 

expect basally secreted granules to be EXIT 

distributed, and evokedly secreted granules to be 

STAT distributed. The literature abounds with 

carefully measured such pairs of distributions. 

These are invariably multimodal, with equally 

spaced peaks shared by both distributions, which 

differ in the probabilities assigned to the common 

skeleton. The STAT volume is stochastically bigger 

than the EXIT volume. The EXIT distribution only 

depends on the effective kinetics and surface 

factors, and the STAT distribution is parametrically 

2-dimensional too in essence, but the pair of 

distributions (EXIT, STAT) solidly identifies the 

three composite parameters above. Maximum 

likelihood estimation of µ/λ, β and γ was performed 

based on 12 such pairs of distributions
9
. The 

(negative) values of β and γ came out outside the 

range of dimensions amenable to classical analysis 

(van der Waals forces, etc.), but the particle physics 

approach applied above provides a powerful viable 

alternative.  

The values obtained for the rosette size pairs 

had Kγ ranging between 4 and 9 and Kβ usually 

equal to but in some cases exceeding Kγ by 1. K-

values as high as 30 have been discussed in the 

literature
9-11

. Theoretical calculations show that the 

inequality Kγ ≤ Kβ+1 is necessary and sufficient for 

the existence of a stationary solution to the G&E 

model. Entropy considerations to be described in 

the sequel show that the information content of the 

change of mode from basal to evoked is high, for 

given Kβ, if Kγ is as high as possible, but the 

contribution of Kγ = Kβ+1 over that of Kγ = Kβ is not 

worth the instability of being borderline stable. We 

contend that the empirical relationship estimated 

between Kβ and Kγ, under which Kβ is preferably 

equal to or exceeds Kγ by 1, is just what evolution 

should have aimed to achieve.  

The estimated values of Kβ and Kγ are strongly 

increasingly correlated with granule size. The 

following Euclidean geometry argument supports a 

“square-root” rule: since SNAREs are very 

homogeneous, their length h is constant (Figure 2). 

Let us think of the rosette as a chordal disk in the 

spherical granule of radius r, at (the small) maximal 

distance h from the surface. Hence, the radius of 

this disk is ( ) 2rh≈2rh 222 h=hrr −−− . In 

other words, the number of SNARE units, 

proportional to the circumference of this disk, 

should be proportional to the square root of granule 

diameter. Linear regression of K on the square root 

of reported average diameter applied to the 12 cells 

in the study, led to the empirical relation 

( ) D±K γ 0.20.9≈ , ( D  measured in nm). 

Let ξ stand for the fraction of evoked secretion 

out of total secretion. In principle, the six 

parameters η, λ, β, µ, γ and ξ determine the 

dynamics and steady state of the entire process. We 

will now generalize the numerical methods to 

evaluate various features of the steady state of the 

system developed by Nitzany, Hammel and 

Meilijson
8
, and extend the scope of the methods to 

the study of transient behavior as well.  

Digressing to Queuing Theory, an M/M/s 

queuing system is a service station with s servers 

(s≤∞) that serve a Poisson stream of arriving 

customers. Inter-arrival times are exponentially 

distributed with some rate α and service times are 

exponentially distributed with some rate δ, all of 

these times independent of each other. The basal 

G&E model may be viewed as a series of M/M/∞ 

Figure 2: SNARE depth h is roughly constant, 

small with respect to granule radius (r). Hence, 

SNARE size Kγ, proportional to the perimeter of the 

rosette (2πa), is proportional to the square root of 

granule diameter (D=2r).   
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stations in tandem, where the first station, mature 

monomers, has arrival rate α=η and service rate 

δ=λ+µ. A fraction µ/(λ+µ) of the served 

“customers” leave the station (secretion of mature 

monomers) and the remaining “customers”, dimer 

polymers, constitute the arrivals to the second 

station, with arrival rate α=ηλ/(λ+µ) and service 

rate δ=λ*2
β
+µ*2

γ
. A fraction µ*2

γ
/(λ*2

β
+µ*2

γ
) of 

the dimer polymers leave the station (secretion of 

dimers) and the remaining “customers”, trimer 

polymers, constitute the arrivals to the third station, 

with arrival rate α=η*(λ/(λ+µ))*( λ*2
β
/(λ*2

β
+µ*2

γ
)) 

and service rate δ=λ*3
β
+µ*3

γ
, etc. While each 

station reaches steady state (because the queuing 

system M/M/∞ is always stable), the system as a 

whole may not, in the sense that the steady state 

occupancy at the various stations may have infinite 

sum. As already mentioned, we have proved
8
 that 

global stationarity requires that γ>β+1. 

This Markovian model lends itself to formal 

and/or numerical analysis, without or with the 

incorporation of evoked secretion, via the parameter 

ξ. The MATLAB program HM2014_mixedsecret.m 

admits as inputs the parameters β, γ, µ/λ, ξ, η and N, 

the desired expected total number of granules in the 

cell under steady state (all MATLAB programs are 

listed in the Supplementary Material). As a first 

step, the program evaluates the particular values of 

λ and µ that achieve N. It then provides the 

stationary and exit granule quantal size 

distributions, as well as a menu of parameters, such 

as mean (stationary and exit) granule quantal size, 

mean and standard deviation of sojourn time in the 

cell, and information-theoretic KLD (Kullback-

Leibler Divergence) measures. Although the mean 

stationary granule quantal size is considered a 

parameter of major interest, the product of η with 

the mean exit granule quantal size provides the 

production rate of unit granules at the Golgi. 

There are questions of interest that defy formal 

or numerical analysis, about transient behavior of 

the G&E system. How long does it take for 

polymers of a give size to stabilize, and how long 

does it take for the total cell granule content and 

mean granule size to stabilize? How stable is steady 

state? To answer these questions as well as others 

the answers might raise, we have written the cell 

simulator Matlab program HM2014_simuLIFO.m. 

The name of the program is indicative of one of the 

salient observations, that evolutionary inventory 

management induces an almost Last-In First-Out 

discipline, where newly created monomers exit the 

cell soon, and occasionally created high-order 

polymers become trapped in the cell for longer 

times, as buffer for emergency needs to be filled by 

evoked secretion. The program can output in 

principle the entire history of a cell scenario for 

days or years, the average of 100 such scenarios, 

and almost any parameter the user might find of 

interest. The parameters are essentially provided by 

the output of HM2014_mixedsecret.m, with the 

addition of the mean batch size of evoked secretion, 

a parameter that does not affect steady state 

distributions but has some effect on the stability of 

steady state.  

There is a good reason to study steady state 

stability, or fluctuations around steady state 

benchmark central values. As proposed, cells 

transmit information to the cellular environment
8
. 

This information, specifically about the current 

dichotomous mode (basal or evoked, quiescent or 

active neuron), is coded into the difference between 

the current intra-cellular and exit granule content 

distributions. If mean granule content N is large 

(and only then), these two distributions are most of 

the time close, respectively, to the (steady state) 

stationary and exit distributions. Besides the 

obvious requirement that the buffer size N must be 

large enough as backup inventory for evoked 

secretion, evolution must find a compromise 

between the need to reach steady state swiftly (by 

making N small) or maintaining stable content 

benchmarks (by making N large). It is of no 

wonder, then, that cells with large, few granules are 

only capable of supplying materials, while cells that 

need to impart information underwent a long 

process of miniaturization to achieve values of N in 

the thousands or tens of thousands, where empirical 

distributions typically mimic their thermodynamical 

limits. 

2. The granule alphabet 

The effects of changes affecting “language text” 

can be quantified using information theory
1
 in terms 

of entropy and mutual information, measures of the 

decrease of uncertainty at a receiver. The 

communication engineer asks how much 

information can be transmitted (or is lost) due to the 

loss of organization. The chemist asks for a 

measure of the extent to which the energy of the 

system is unavailable to work due to the loss of 

organization, and answers it by counting the 
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number of microstates a system can occupy, to 

provide both a measure of the entropy of the system 

as well as a way of telling which processes are 

permissible under the Second Law of 

thermodynamics
1,12

. The ecologist views entropy as 

an index of system diversity
13,14

. The factor 

common to all of these definitions is that they 

describe ways to define the system state.  

The paradigm that views polymerization as 

interacting monomer particles and the granule G&E 

life cycle as a fusion nano-machine, leads to a 

single-letter alphabet (the monomer) in which 

system state (or “word”) is polymer size. As in the 

best tradition of Information Theory
15

, the different 

distributions of secreted polymer size and secretion 

rates under basal and evoked secretion constitute a 

noisy communication channel through which the 

cell transmits to the environment the dichotomous 

information of whether it is in basal or evoked 

mode. Noisy channels achieve reliability of 

information by means of redundancy and repetition, 

the role played by burst size in evoked secretion. 

Flory
16,17 

differentiated between two major 

basic mechanisms of polymerization. The first is 

one in which a polymer of any quantal size (n) may 

react with any another polymer (say, of size m) to 

form a larger polymer (Gn+Gm → Gn+m). Such 

mechanism of polymerization will lead to 

geometric-like distributed quantal volume in the 

case of non-reversible kinetics. Under such a 

distribution, the frequency of polymers decreases in 

their size, monomers being always most likely.  

The alternative mechanism considered by 

Flory
16,17

 is the very organized and restricted 

process under which only a unit granule (monomer) 

at a time may be added to polymers of any size (Gn 

+ G1 → Gn+1). Such unit addition mechanism leads 

to Poisson-like distributions (in reversible or non-

reversible kinetics), where the most probable 

polymer size is close to the mean polymer size
5,16,17

. 

We documented in early stages of our work that 

granule size distribution shows a better fit to the 

unit addition mechanism
18,19

. Later work
8,9,11

 

established the necessity to move away from 

classical biochemical and biophysical approaches 

(that assumed all monomers to be initially present 

and restricted granule size distributions to the two 

families above)
20

 in favor of a particle Physics 

approach under which a "packaging machine" 

produces unit granules of monomer size that 

coalesce with mature granules by the unit addition 

mechanism. The resulting SNARE-driven G&E 

model is the basis of our hypothesized mode-

dependent stochastic polymer-size single-letter 

communication language. 

The optimization process needed to construct 

such a language involves the imposition of 

constraints on polymer random frequency to detect 

errors efficiently
1,12

. Error detection and correction 

in noisy channels are based on forbidden or at least 

stochastically restricted letter combinations. 

Redundant transmission plays a role in the build-up 

of grammar. That such protective, redundant 

information accumulation has a positive survival 

value was pointed out by Gatlin
1
 and Dancoff and 

Quastler
12

. To decrease entropy and increase the 

fidelity of the message, the number of microstates 

has to be kept under proper control. Of the two 

polymerization mechanisms described above, the 

unit addition mechanism has a smaller message 

variety and better fidelity of message transmission 

than random addition, which seems to involve more 

redundant information content and smaller capacity, 

or mutual information between mode and size. 

Gatlin
1
 noted that the syntax of different biological 

languages differs in the number of letters: to 

increase fidelity of energy usage, energy is stored in 

a polymer of one type of monomer (the phosphate 

unit) but for the purpose of processing the huge 

diversity of information transferred by different 

ligands, a language of versatile units - proteins - is 

needed. 

Intracellular as well as extracellular chatter face 

a ceaseless offensive of information. Thus, in order 

to elucidate the correct information the cells 

frequently use a single-letter language to achieve a 

precise and effective communication using a 

mechanism in which the “string message” size is 

regulated. In order to establish confident neural 

communication the unit granule size had to be 

decreased and made more homogeneous
8,9

. The 

evolutionary price tag was high turnover
8
, with an 

additional benefit - the rate of secretion became part 

of the information gain.  

3. Secretion rate 

Cells communicate with each other primarily 

through secretion. We have recently proposed
11,21

 

that basal (or constitutive, spontaneous) and evoked 

(or active) secretion, that differ in calcium 

concentration [Ca
2+

], follow comparable 

dependence pattern secretion rate = 
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const1*E{(const2*[Ca
2+

])
min(X,M)

}*e
-K/2

 of secretion 

rate on [Ca
2+

] (with truncated stochastic number of 

cooperating ions X) and SNARE rosette size K. 

This relationship is a wide-spectrum generalization 

of the cell-specific maximal in vitro relationship 

secretion rate = const*[Ca
2+

]
M

 proposed by Dodge 

and Rahamimoff
22

, where const varies from cell 

type to cell type, and M is the maximal Ca
2+ 

cooperativity. The generalization is two-fold, 

encompassing all cell sizes via the dependence on 

rosette size K and all secretion modes (basal, in-

vivo evoked, in-vitro evoked, etc.) via the 

dependence on the random number X of 

cooperating Ca ions, for which we applied a 

working paradigm making it Poisson-distributed 

with mean proportional to [Ca
2+

]. The regression 

coefficient of log secretion rate on K came out so 

close to -0.5 that we substituted the latter, with no 

implied intrinsic reason. However, the order of 

magnitude is consistent with the G&E model, 

considering that e
-K/2

=2.117
-(2/3)K

 corresponds to a 

representative quantal size slightly above 2. There 

is at present not enough joint ([Ca
2+

], K) data in the 

literature to estimate the value of const1 and 

validate the proposed multiplicative model, but the 

single-variable models secretion rate = 

const3*E{(const2*[Ca
2+

])
min(X,M)

} and secretion rate 

= const4* e
-K/2

 provide good fits to data. The 

constant const2, unnecessary in Dodge and 

Rahamimoff’s model
22

, adjusts for the volume unit 

chosen for recording [Ca
2+

].  

The first recorded evidence for slow secretion 

dealt with neurosecretory synapses. This type of 

secretion, coined minis (for miniature 

neurotransmission) and hypothesized as a trans-

synaptic process where single synaptic vesicles 

spontaneously secrete from pre-synaptic neurons 

and induce miniature postsynaptic potentials
23

, does 

not induce neurons to fire and was thus considered 

as insignificant background noise. In contrast, basal 

secretion in evolutionarily older cell types has been 

found to be interrelated with physiological roles
24

. 

Thus, recent findings
23,25 

of abnormal synapse 

development in Drosophila larvae neurosecretory 

cells when both basal and evoked 

neurotransmission are blocked, should come as no 

surprise: inhibiting or stimulating evoked 

neurotransmission alone had no effect on synaptic 

development, blocking minis failed to develop 

synapses but stimulating the secretion of more 

minis made synapses get bigger
25

. The information-

theoretic approach introduced in the next Section, 

based quantitatively on KLD (Kullback-Leibler 

Divergence), broadens the view that the interplay 

between basal secretion (by itself nearly 

meaningless as a carrier of information) and evoked 

secretion (by itself an express supplier of material) 

constitutes the channel for efficient cellular 

communication.  

Before embarking on a quantitative information 

theoretic analysis, we summarize here, and relate to 

the M-K relation, the main finding that the gradient 

of granule size distribution between the two modes 

becomes less and less informative as granules 

become progressively smaller, creating a need for 

increased differentiation of rate of secretion 

between the two modes. The positive dependence of 

secretion rate on maximal ion cooperativity M may 

be the evolutionary tool to compensate for the 

negative dependence on rosette size K. The sharp 

Calcium gradient between the high extracellular to 

the low intracellular concentration (≈0.1 µM), in the 

order of 10
3
-10

4
, allows for fine-tuning of evoked 

secretion response through Calcium gates and 

Calcium binding proteins, and may have evolved 

Calcium-triggered exocytosis of secretory granules 

as the main mechanism for cell-to-cell 

communication in animals. In the course of 

evolution this pattern of exocytosis has been 

subsequently optimized for speed: while large 

granules stay close to the plasma membrane in an 

unbound state, SNARE complexes form between 

small neurosecretory granules and the plasma 

membrane to facilitate secretion. Such bound 

neuro-vesicles are immediately available for 

secretion. Synaptotagmin, a phospholipid and Ca
2+ 

binding vesicular protein, sets the Ca
2+

 dependence 

of the evoked-state fusion process in neurosecretory 

vesicles. Synaptotagmins function as the primary 

Ca
2+

-sensors for most of these forms of exocytosis, 

acting via Ca
2+

 dependent interactions with both the 

fusing phospholipid membranes and the membrane 

fusion machinery
26

. Although many properties of 

the acknowledged Ca
2+

 receptor for exocytosis at 

the synapse have been described in a number of 

electrophysiological and biochemical studies, the 

molecular mechanisms that couple influx of Ca
2+

 

and secretion of neurotransmitters have remained 

elusive. It is accepted, however, that fast 

neurosecretion involves maximal Calcium 

cooperativity (M) in the range of 4-5, as compared 

to M≤2 for slow large secretory granules: Ca
2+
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triggers various forms of exocytosis in different 

types of eukaryotic cells, synaptic vesicle 

exocytosis in all forms of neurons (3≤M≤5), granule 

exocytosis in hematopoietic cells (M≤2), and 

hormone exocytosis in endocrine cells (2≤M≤4). It 

is well accepted that neuro-vesicle evoked secretion 

is initiated by quite high Ca
2+

 concentrations within 

microdomains, while short-term facilitation is 

strongly influenced by the global buildup of 

"residual calcium". Neher and Sakaba
27

 documented 

that the intracellular Ca
2+

 concentration, at which 

the rate constant is 10% of the maximal rate, is in 

the range of 10-80 µM (initial intracellular Calcium 

concentration is in the order of 0.1 µM) and 1-20 

µM in endocrine cells. Thus, in case of evoked state 

a local microdomain of  [Ca
2+

] which is 4-8 times 

of initial concentration and M=3 will result in 

evoked rate 4
3
-8

3
 (64-512). 

4. Change-point recognition 

The receiver (receiving end in a communication 

channel) observes independent and identically 

distributed output symbols from some benchmark 

distribution (e.g., basally secreted granule volume 

at a Poisson basal secretion rate θ), and once in a 

while this distribution is replaced by another (e.g., 

evokedly secreted granule volume at a higher 

Poisson secretion rate θ*R) for some length of time. 

The nature of the evoked disturbance should be 

designed so that the receiver will detect the true 

advent of evoked mode with high probability, while 

keeping the rate of false alarms below some control 

limit. Clearly, this would be the case if evoked 

secretion rate was “infinite”, i.e., if a burst of 20 

granules was secreted simultaneously. Under 

biological feasibility constraints that bind the 

evoked secretion multiplier R to be below 10 or 50, 

recognition of the change should be based on all 

data available – secretion rate and granule size. 

There is a statistical theory discipline dedicated 

almost precisely to this endeavour, detecting a 

change-point in distribution, where once the change 

has happened, observations will follow forever the 

new distribution. The CUSUM statistic method 

(introduced by Page
28

, proved optimal by Lorden
29

 

and Moustakides
30

) minimizes the expected time to 

detect a change after it has happened, keeping false 

alarm rate under control. Since in our biological 

application secretion reverts to the pre-change state 

following the evoked burst, the CUSUM expected 

time to detection criterion should be replaced by 

some longer time-window of evoked burst (say, 

2SD above the mean) to render the probability of 

detection close enough to unity.  

Let f and g stand respectively for the (known) 

densities of the observed data (granule volume and 

time since the previous secretion) before and after 

the change, and let x1, x2, … xn … (with xi=(ni,ti)) 

stand for the successive observations. The 

commonly used Neyman-Pearson-type statistic
31

 

that best differentiates between two hypothesized 

stochastic regimes is the random walk 

 
whose drift is negative as long as the first regime 

holds but turns positive after the change. The 

CUSUM statistic Dn is the draw-up at time n, Dn = 

Sn – min(S1, S2,… Sn), the incremental increase of 

the random walk from its minimal value so far. A 

detection is declared as soon as the draw-up 

exceeds some pre-assigned control limit, i.e., 

provides enough evidence that the trend turned 

upwards. Some details will be provided now, to 

quantify detection performance and compare the 

CUSUM method with neuronal integrate-and-fire 

management. It seems indeed that evolution got 

advanced notice of Page’s paper
28

.  

The pre- and post-change drifts of the random 

walk, KLD(G,F)= EG[log(g(X)/f(X))] and 

KLD(F,G)=-EF[log(g(X)/f(X))], called Kullback-

Leibler Divergence (KLD), constitute information 

theoretic measures of distance between the two 

distributions F and G. Each is the sum of two non-

negative terms, the KLDC of secreted granule 

content and the KLDT of the (exponentially 

distributed) time interval from the previous 

secretion. It follows from the formula θ*exp(-θ*t) of 

the exponential density function (or rather its 

logarithm log(θ)-θ*t) that KLDT(G,F)=ln(R)-1+1/R 

and KLDT(F,G)=R-1-ln(R). These are increasing 

functions of the ratio R between evoked and basal 

secretion, with value obviously zero at R=1, a slow 

identical beginning ≈(R-1)
2
 but growing like ln(R) 

and R respectively thereafter. The mean number 

MGD of evokedly secreted granules until detection 

of this secretion mode, for a desired mean number 

MGFA of basally secreted granules until a first false 

alarm
8 

(see also Appendix) is approximately given 

by MGD ≈ ln(MGFA*KLD(F,G))/KLD(G,F). For 

MGFA=10
5
 (about one mistake per day at secretion 

rate of 1Hz), MGD would be over 50 for R=2, 10 

for R=10, 4.5 for R=100 and 3.1 at R=1000 if the 

STAT and EXIT distributions were 
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indistinguishable. Since R has been assessed to be 

roughly 10 in vivo, an evoked burst of a few tens of 

undifferentiated granules would provide adequate 

detection. Considering that KLDT(G,F)=1.4 for 

R=10, if the granule content contribution 

KLDC(G,F) to the denominator KLD(G,F) of MGD 

was of double or triple size, burst size would be cut 

to half or a third respectively. Table 2 displays 

KLDC(G,F) for selected cell parameters covering 

the cells exhibited in Section 6. It is clear that for 

R>10, an evoked burst of ten granules is borderline 

adequate for detection as long as the rosettes consist 

of at least 8 SNARE units. Miniaturization brings 

about the need for longer and/or faster evoked 

bursts. Neuro-secretory vesicles seem to require 

R=100.  

The draw-up Dn is stochastically smaller than 

the time Tn it takes the random walk to reach height 

n (because at that time Dn is at least n), somewhat 

easier to analyze than Dn. As a premature but 

motivating example (developed further in the 

Appendix), a random walk with increments +1 

(with probability p>1/2) and -1 (with probability 1-

p) will reach a positive integer threshold n at 

expected “time” (number of evokedly secreted 

vesicles) n/(2*p-1), variance n*4*p*(1-p)/(2*p-1)^3 

and CV=SD/mean just below             

( )( )np ∗−∗ 12/1 . If p=3/4 and expected time is 4 

(see the bottom of Table 2, R=100) then n=2 and 

CV<1, so a burst size of 12 (2SD above the mean) 

seems adequate. If expected time is 8 (R=10) then 

n=4, 2/1<CV and the corresponding burst size 

would be ( ) 192/218 =+∗ .  

The increments of the log likelihood ratio 

random walk Sn are linear functions of log(granule 

size) (with positive coefficient) and time interval 

(with negative coefficient). Hence, the monitored 

draw-up behaves like an action potential that decays 

linearly in time, is prevented from becoming 

negative and gets as innovation inputs the logarithm 

of quantal granule content. This is very similar to 

integrate-and-fire neuronal management modelling, 

where the action potential decays exponentially 

rather than linearly with positivity constraint. The 

relationship between the CUSUM statistic and 

integrate-and-fire neuronal management has been 

documented elsewhere too
32,33

. Our approach 

proposes the identification of action potential input 

innovations as logarithms of secreted granule 

content. 

5. Inventory management – trade-off between 

inventory and information 

Granule packaging, the last step following content 

processing within the Golgi apparatus, protects 

macromolecules for storage and secretion, by 

creating a walled compartment. Granule packaging 

can be viewed as a synchronized system of 

organizing macromolecules assigned for transport 

and secretion within the cell, a warehouse in which 

the granule assembles act as inventory.  

Within and attached to the granule membrane 

there is a variety of proteins of which some, 

designated as package-labeling, assign the granule 

for correct destination
34-37

. Granule packaging by 

membrane enclosure and membrane labeling can be 

rationalized in various ways. By enclosing granule 

content, the packed molecules are protected from 

biochemical and biophysical modifications, while at 

the same time shielding the environment from its 

content. In addition, since many of the secretory 

molecules have hydrolytic capacity, the cell 

cytoplasm is also protected. Keeping such barrier 

contents safeguards the cell and probably increases 

granule content shelf life
38,39

. The cell may contain 

different granule types, and each such granule type 

may contain some molecules that cannot share the 

same compartment with other molecules (e.g. 

storing an enzyme with its substrate). Namely, 

granule packaging accomplishes a vital role in 

reducing the security risks of long time storage.  

It is evident from Table 1 that granules contain 

clusters/agglomerates of a number of major 

molecules. In all of these cases, the number of 

copies of the leading molecules is in the order of 

10
3
 and above. Since 1000 vesicles of unit volume 

will have 10 times more membrane as compared to 

a granule that contains the equivalent of 1000 

vesicles, an increase in the macromolecule 

agglomerate brings about a lesser demand for 

content surface handling. 

Granule inventory may be considered as an 

inventory of consumable goods, to be demanded by 

the environment. Shared information reduces 

uncertainty and reduces the need for safety stock. 

Thus, crosstalk between the cell and the 

environment must be established. The key to 

improved supply chain visibility, i.e. the capability 

of being readily perceived, is the sharing of  

information among supply chain members.  
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Table 1: Ca
2+

 dependence of the rate of exocytosis in various secretory cells in correlation with 

morphometric data and inventory content
9,11

 
 

Cell Type 
Basal rate  

(per sec) 

Initial 

maximal rate  

(per sec) 

Granule 

diameter 

(nm) 

Rosette 

size (K) 

Granules 

per cell 

Calcium 

cooperativity 

(M) 

ANP 6 100 350 16 240   

Chromaffin cells 1.5 1500 177 11 41000 3-5 

Enterochromaffin-like 

cells 
9 160 200 12 5200   

Eosinophil < 0.0008 0.6 500 20 400   

Juxtaglomerular cell 0.0005 0.017 1050 29 445   

Mast cell 

(peritoneum) 
0.00024 0.8 500 20 1000 1-2 

Pancreatic acinar cell 0.0033 0.62 600 22 1100 3 

Pancreatic β-cell 0.01 14 305 15 11000 3-5 

Parotid 0.0042 0.3-1 800 25 450 1-2 

Pituitary melanotroph 0.45 25-450 160 11 20000 3 

Type II alveolar cell 0.00037 0.04  1270  32 188 1-2 

 

Table 2: Burst size needed for detection of mode change, for a wide choice of granule sizes. 

Kβ Kγ μ/

λ 

MGS 

evoked 

MGS 

basal 

KLDC(e,b) KLDC(b,e) MGD 

(R=10) 

STDGD 

(R=10) 

Burst 

(R=10) 

MGD 

(R=100) 

STDGD 

(R=100) 

Burst 

(R=100) 

20 20 2 12.44 1.50 10.36 17.42 1.25 0.38 2.00 1.16 0.36 1.88 

20  19 2 6.42 1.43 7.14 11.59 1.69 0.54 2.77 1.50 0.51 2.42 

20 18 2 4.61 1.39 5.51 8.63 2.06 0.70 3.45 1.77 0.64 3.05 

11 12 2 35.09 1.67 8.13 13.8 1.52 0.55 2.63 1.38 0.53 2.43 

11 11 2 6.98 1.50 4.67 5.90 2.31 0.81 3.93 1.95 0.74 3.43 

11 10 2 4.03 1.43 2.90 3.54 3.21 1.24 5.71 2.47 1.09 4.65 

11 10 4 3.20 1.23 2.84 2.91 3.25 1.29 5.83 2.49 1.13 4.75 

8 8 4 3.52 1.25 2.52 2.18 3.49 1.53 6.54 2.62 1.32 5.26 

7 7 4 3.10 1.25 1.92 1.56 4.10 2.00 8.10 2.90 1.68 6.27 

7 6 4 2.23 1.23 1.03 0.84 5.56 3.30 12.16 3.46 2.61 8.67 

6 6 4 2.68 2.46 1.34 1.03 4.94 2.78 10.51 3.24 2.25 7.75 

5 6 4 4.63 1.29 2.27 1.54 3.71 1.92 7.56 2.73 1.65 6.03 

5 5 4 2.28 1.25 0.82 0.61 6.07 4.14 14.35 3.62 3.19 10.01 

5 4 4 1.73 1.23 0.33 0.26 7.76 7.38 22.51 4.07 5.35 14.76 

4 5 4 3.44 1.29 1.33 0.88 4.96 3.07 11.07 3.25 2.48 8.21 

4 4 4 1.92 1.25 0.41 0.31 7.41 6.59 20.60 3.98 4.83 13.65 

4 3 4 1.52 1.23 0.13 0.11 8.77 12.62 34.01 4.29 8.82 21.93 

4 3 2 1.91 1.43 0.19 0.17 8.46 9.90 28.25 4.22 7.00 18.22 

Kβ – Number of SNAREs for homotypic fusion at basal state; Kγ – Number of SNAREs for heterotypic fusion at basal state; µ/λ - 

effective kinetics factor; KLDc - Kullback-Leibler Divergence of secreted granule content; MGS – Mean quantal granule size; 

MGD - Mean number of evokedly secreted granules until detection; STDGD – standard deviation of number of granules until 

detection; Burst – MGD+2*STDGD As a result, the organism becomes more responsive, 
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As a result, the organism becomes more responsive, 

and could ultimately become demand-driven rather 

than forecast-driven. Mason-Jones and Towill
40

 

have demonstrated that “information-enriched” 

supply chains perform significantly better than 

those that do not have access to information beyond 

their corporate boundaries. Evolution fine-tunes the 

RER-Golgi pathway for packaging of goods to be 

supplied, to achieve agility - the ability to match 

supply more closely with demand. The key to 

agility is speed
41

 and a key characteristic of an agile 

organization is flexibility. If flow through the 

pipeline can be accelerated then unpredictable 

demand can be met more accurately.  

Even better, less inventory makes the pipeline 

shorter – in effect Christopher and Towill
41

 have 

substituted information for inventory. The cross-

talk between the cell and the environment (or the 

receiver) confirms knowledge of what goes on in 

other parts of the chain – e.g. granule inventory 

(=order status), inventory of supply for synthesis, 

work-in-process, pipeline inventory within the RER 

and the Golgi, actual demands, production plans 

and capacity of synthesis (=yields). These authors 

have established, in addition, the concept that 

success or failure of a supply chain is ultimately 

determined by the end consumer (i.e. the receiver). 

Getting the right product at the right time to the 

consumer "is not only the lynch pin to competitive 

success but also the key to survival". Uncertainty 

can’t be fully removed from the supply chain due to 

the stochastic type of product involved. For 

example, intrinsic properties of a pathogen that 

enters the tissue make demand and host survival 

unpredictable. Mast cell macrophage and 

neutrophil-specific granule inventory, confront with 

circumstances that require to accept uncertainty, 

need to develop a strategy that enables the cell to 

match supply and demand
38,39

. Accordingly, in 

many inventory systems of perishable items for 

consumption, the consumer controls the issuing of 

stock to meet demand in such a way that the 

movement of units through the system obeys a 

LIFO discipline
42

. Thus, upon pathogen invasion, 

the tissue activates the mast cell to secrete content 

upon demand.  

6.  Econo-biology of granule inventory 

management 

Evolution has linked granule structure and 

function. Large granules (rosette size K>24) are 

mainly associated with adaptive tissue maintenance. 

The most studied cell in this class is the alveolar 

type-II cell of the lung (Table 1), whose main role 

is basal lubrication of the lung alveoli in order to 

reduce surface tension during breathing, about one 

granule per hour
43

. The next group of cells down 

the size ladder (rosette size K between 12 and 25) is 

represented by the adaptive immune system (e.g., 

mast cells, eosinophils) and the acinar cells of the 

gastro-intestinal system (GIT, e.g., pancreatic and 

parotid acinar cells). These cells, which vary in 

their evoked secretion frequency, respond to 

demand dictated by the environment, whether it is 

exposure to an antigen (immune system)
38,39

 or to 

food (GIT)
44,45

. Basal secretion is minimal in the 

immune system to prevent tissue destruction, 

whereas in GIT it is about 10 times faster due to its 

food processing role. The third group, the hormone 

secreting cells (rosette size K between 9 and 16), is 

represented by the pancreatic insulin-secreting β-

cells and the chromaffin cells. These cells has well 

defined roles for both modes of secretion, which 

serve as regulators of tissues homeostatic states
46,47

.  

The smallest secretory group consists of neuro-

secretory vesicles (rosette size K between 4 and 8), 

with fast-excitatory hearing and visual sensory cells 

at the smallest end (basal secretion rate ≈ 1 Hz) and 

neuro-muscular synapses at the bigger end
9,11

. We 

have chosen to illustrate transient and steady state 

inventory maintenance for cells stabilizing at a 

content of at least 400 granules, with rosette sizes in 

the vicinity of 5, 11 and 20 SNARE units. 

Figure 3 displays homotypic fusion rosette size 

Kβ=20 and heterotypic fusion rosette size Kγ 

between 19 and 21, for cells with µ=2λ that secrete 

6 granules per hour, of which 0.1% are secreted 

evokedly, designed to stabilize at a total content of 

1000 granules. The data demonstrates that even 

after 3 years the cells have not stabilized, reaching 

under 200 granules for Kγ=21 and just over 500 for 

Kγ=19 (Figure 3 inset), with mean granule size 

about 4 for Kγ=19 (consistent with Hammel et al.’s. 

experimental data
48,49

) and above 12 and still 

growing for Kγ=21 (Figure 3, inset). We see that 

monomers and dimers stabilize soon, trimers are the 

most frequent granules until stabilizing at about one 

month (for Kγ=19), after which bigger granule 

polymers take over. This display supports the 

classical observation by Padawer
50 

that granule-

associated thorium dioxide remains within the cell 

for at least six months. These observations are 
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consistent with mast cell and eosinophil behavior. 

In contrast, pancreatic acinar cells seem to 

compensate by an initial accelerated synthesis rate 

about 20 times as fast
5,51

. 

Figure 4 displays the same parameters as Figure 

3, with Kγ differing from Kβ by -1, 0 and 1, except 

that Kβ=11 instead of 20. The process is faster, 

mean granule size is smaller, but the pattern is 

similar. Dimers are the most frequent polymer in 

the first day, while two weeks later bigger polymers 

take over. 

What follows illustrates a different pattern of 

behavior following miniaturization. Figures 5 and 6 

deal with Kβ=5 (and Kγ differing by -1, 0 and 1). 

Secretion rate is 1 Hz, evoked secretion constitutes 

2% to 8% of total secretion, µ=4λ and cell content 

stabilizes at 400 to 8000 vesicles. Fixing Kβ and Kγ 
at 5, we can see the effect of total granule 

inventory. Low content (400 vesicles) brings the 

cell to stabilize within a little over one hour but 

generates notable size fluctuations, seemingly too 

erratic for accurate communication. Very high 

content (8000 vesicles) generates very stable size 

distribution but pays a heavy price in terms of 

relaxation time, stabilizing after roughly 100 hours. 

 It seems that content size 2000 is a 

reasonable compromise. It is worthwhile to note 

that steady state benchmark is identical in the three 

pictures. Keeping granule content as 2000 but 

reducing Kγ to 4 makes granule size stochastically 

smaller, with monomers becoming more frequent 

than dimers.  

Figure 3. Simulations of granule inventory buildup. Unit granule diameter is about 500±20 nm (Kβ= 20). One 

unit-granule (G1) is packed every ten minutes under the limitation of µ=2λ  and heterotypic fusion of which 0.1% of 

the granules are secreted evokedly. Final inventory size is designed to stabilize at a total content of 1000 granules and 

takes significantly more than three years. Mean granule size (inset), independent of inventory size, correlates well 

with published data for rat mast cells
47

 eosinophil
49

 for the case of  Kβ= Kγ+1=20. 
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As for detection of change of mode and the impact 

of secretion rate magnification, by Table 2, the 

reduction of Kγ from 5 to 4 makes mean granule 

size decrease from 2.28 to 1.73, while KLDC(G,F), 

already as small as 0.82, decreases drastically to 

0.33. However, these KLDC values are so small that 

granule size has only a minor impact, and detection 

of change of mode is primarily dictated by secretion 

rate amplification R: burst size increases from about 

10 to about 12 (R=10) or from 5 to 5.4 (R=100). 

These figures have to be assessed in context – the 

last row of Table 2 shows that no granule size needs 

a burst size exceeding 14 (R=10) or 5.6 (R=100). In 

contrast, for granules with K ≥ 7, bursts of size 8 or 

smaller are adequate.   

Shifting attention now to the fraction of evoked 

secretion, Figure 6 ascertains the minor impact of a 

4-fold increase in evoked secretion on vesicle size 

distribution – the cell can maintain its information 

capacity under variable evoked demand. This 

complements the previous robustness finding that 

changes in secretion rate (equivalently, cell granule 

content) do not affect benchmark steady state. 

An overview of the three granule size patterns 

displayed above shows that the proportion of 

monomers and dimers is very low for bigger 

granules and very high for smaller vesicles. As a 

result, turnover is high for neuro-secretory 

vesicles
8
, a price toll paid by miniaturization. A 

related heavy penalty associated with the similarity 

of evoked and basal vesicle size distribution 

brought about by miniaturization is the drastic 

reduction of KLDC. The contribution of size 

gradient to detection of change of mode is minor, 

Figure 4: Simulations of granule inventory buildup in case of middle-sized granules. Unit granule diameter is 

about 160±10 nm (Kβ= 11, with Kγ differing from Kβ by -1, 0 and 1). One unit-granule (G1) is packed every ten 

minutes under the limitation of µ=2λ and heterotypic fusion of which 0.1% of the granules are secreted evokedly. 

Final inventory size is designed to stabilize at a total content of 1000 granules and takes less than a year. Mean 

granule size (inset), display similar pattern of growth in case Kγ=10 or equal to Kβ.  
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and as a result the evoked burst must be bigger or 

faster.  

The relative size of Kβ and Kγ plays a decisive 

role. If Kγ=Kβ+1, the cell is unstable but 

information-efficient. If Kγ=Kβ-1, the cell is stable 

but less informative than it would be by either 

adding one SNARE unit to the Kγ rosette or 

removing one SNARE unit from the Kβ rosette. The 

simple evolutionary strategy of learning how to 

build one rosette size for both types of fusion seems 

also the most efficient. 

7. Summary words on the surreptitious nano-

machine 

The most probable main role of basal secretion 

is to carry out biosynthesis and secretion of recently 

stored cargo to the cell plasma membrane, 

independently of extracellular signals. In the second 

pathway, regulated secretion, particular secretory 

products are sorted and stored within secretory 

granules, whose fusion with the plasma membrane 

takes effect only if prompted by extracellular 

signals. These secretory proteins are frequently 

synthesized as inactive precursors, cleaved into 

their functional forms during transport from the 

Golgi to the immature granule and upon granule 

maturation
35-38

. The secretory pathway thus serves 

two crucial functions: (i) physiological adaptation 

of secretory content in response to environmental 

changes and (ii) granule inventory management. 

The core components of the heterotrimeric 

apparatus that mediates secretion are three SNARE 

proteins, VAMP, SNAP and syntaxin, that assemble 

Figure 5: Simulations of granule inventory buildup in case of small neurosecretory vesicles. Unit vesicle 

diameter is within the range of 35-40 nm (Kβ= 5, with Kγ differing from Kβ by -1, 0 and 1, µ=4λ). Basal rate of 

secretion is 1 Hz and of which 2% of the granules are secreted evokedly. Final inventory size is designed to 

stabilize at a total content of 400-8000 vesicles.  
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to form a rosette which serves as the minimal fusion 

nano-machine required for fusion
55-58

. The 

homotypic fusion rosette size at basal state is 

dictated by granule size  (Kβ ≈ 0.9 D ). Further 

work lead us to propose a simple equation for rate 

of secretion as C*[Ca
2+

]
 min(X,M)

*e
-K/2

 in which the 

heterotypic fusion rosette size K can be controlled 

to be within the range 1 ≤ K ≤ Kβ +1. Maximal 

evoked rate may implement K=1
8,9

 while basal 

secretion seems to entail Kβ -1 ≤ K ≤ Kβ +1. In this 

report we have integrated some mathematical basics 

for such stealthy machine and a description of its 

administration of granule inventory.  

The current knowledge on the structure of 

individual SNARE proteins has been summarized in 

a number of recent reviews, which present 

mechanistic insights into the question of how did 

the fusion machine evolve into such level of 

complexity
52-58

. Understanding the design principles 

and underpinning the function of such a dynamic 

modular protein system is a challenging task. 

Characterization of rate of secretion, a fundamental 

problem since the 1950s work of Sir Bernard Katz
4
, 

has been investigated using classical biophysics 

models or curve fitting to general equations (e.g. the 

Logistic curve, Hill plot etc.). The main drawback 

of these smooth approaches is that these rules "obey 

well" within a close range of data, for restricted 

cases. In a recent manuscript
9
 we proposed an 

alternative statistical-mechanics-based granule 

lifecycle G&E model. The current manuscript 

brings forward the wide-spectrum secretion rate 

relation C*[Ca
2+

]
min(X,M)

 *e
-K/2

 as a facet of the 

mathematical G&E model
11

.  

The validity of the statistical mechanics 

approach, that covers all biological range of [Ca
2+

], 

secretion rates (10
-5

–10
5
 granules per millisecond)

11
 

and granule dimensions, has been checked on 27 

different cells, with granule volume range 8x10
3
–

1.1x10
8
 nm

3
. This M-K relation is parsimoniously 

based on only two or three physical parameters: ion 

maximal (M) and actual (X) cooperativity, and the 

number of SNARE units (K) needed for fusion. We 

are aware of no earlier attempt to try on this subject 

discrete statistical mechanics approaches; classical 

biophysics and continuous space formulas sound 

more "scientific" than controversial probability 

assessments. However, within the small volume in 

which fusion reactions occur (≈1.4x10
-26

 m
3
), 

classical biophysics probably plays a minor 

contribution.  

A significant part of this review dealt with 

granule inventory management and its evolution to 

the establishment of a simple communication 

machine. It emerges that such stealthy machine can 

manage granule hierarchy since rate (dictated by K) 

is highly correlated with granule size. While most 

cell types possess an inventory of granules of a 

single type, some secretory cells have a 

heterogeneous arsenal of granules of different 

Figure 6: Simulations of granule inventory buildup in case of small neurosecretory vesicles. Unit vesicle 

diameter is within the range of 35-40 nm (Kβ= 5, with Kγ differing from Kβ by 0 and 1, µ=2λ). Secretion rate is 1 

Hz, evoked secretion constitutes 2% to 8% of total secretion, µ=4λ and cell content stabilizes at 2000 vesicles. 
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OPEN Questions: 

1. Which SNARE proteins dictate secretory granule pools with different secretion 

probabilities? 

2. Since maturation of immature granules is under intracellular control and is 

integrated into higher regulatory networks, what are the proteins that dictate it? 

3. Is there a unifying control mechanism for fusion?  

4. What is the biophysical meaning of the effective kinetics factor µ/λ? 

 
type/content. Evidently, the emergence of a simple 

SNARE nano-machine that must manage secretion 

dictated by just very few parameters (the M-K 

relation) is a challenging evolutionary task. Since 

all granules "perceive" upon activation similar 

calcium concentration
59

, the cell’s option to monitor 

granule hierarchy is limited to the management of 

granule inventory by assigning to each granule type 

a rosette K-size. Namely, granule hierarchy is 

dictated by granule size
11

. Since secretion rate is 

linearly correlated with e
-K/2

, increasing K by four 

SNARE units leads to ≈7.4X acceleration of the 

secretion rate. However, since granule diameter is 

linearly correlated with K
2
, the price for a ∆K=4 

increase in rosette SNARE size means a 

(K+4)
2
/K

2
X increase in granule diameter. In case 

K=8, 12, 16 and 20, granule diameter will increase 

(due to ∆K=4) by a factor of 2.25, 1.78, 1.56 and 

1.44 respectively. There are two cells which were 

identified to have at least three granule types, 

polymorphonuclear neutrophil and platelets. 

Polymorphonuclear neutrophil (PMN) has two 

oblate D1≈85x209nm (K≈8-12), D2≈124x305nm 

(K≈9-15), and one spherical D3≈260nm (K≈14) 

granules
60-62

. Platelets have D1≈150nm (K≈11), 

D2≈200-250nm (K≈12-14) and D3≈200-400nm 

(K≈12-18)
63-65

. Both cells store active enzymes in 

the large granules and their substrates in the 

smallest granules. Thus, small granules will be 

queued first for secretion and the largest granules 

will be last. As such, the active enzymes will 

mainly process the substrates with less chances for 

tissue destruction. To decrease basal secretion of 

harmful proteins the PMN cells terminate granule 

synthesis (increase λ and thus decrease µ/λ) and 

generate ellipsoid-like granules (and thus 

increase K).  

The co-existence of two secretory pathways 

within the same cell, basal and evoked, requires 

correct categorization of secretory content and 

vesicle machinery to each pathway
66

. Our model 

suggests that there may be no need for specialized 

sorting of cargo to each pathway: the cell 

selectively dictates synthesis of the new set of 

proteins to be secreted in response to environmental 

demands. The newly synthesized content is 

assigned to the newly formed granules and gets 

priority for secretion
8,9

. Newly formed granules 

which are not secreted, are incorporated to the 

granule inventory according to the stochastic 

pathway in Figure 1. Thus, the evolutionarily 

generated secretion machinery will assign mature 

granules to be secreted in the regulated pathway 

mostly upon stimulation.  

We hope and predict that the statistical 

mechanics approach applied herein, in which a 

single simple machine emerges as a multitasking 

nano-machine, will have a key changing effect on 

the investigation of the pathophysiology of 

secretory mechanisms and on biophysical 

methodology for the investigation of secretion, 

beyond the electrophysiological, amperometric and 

fluorescence measurement approaches applied so 

far.  
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